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Abstract. Elementary excitations for the integrable spin-S antiferromagnetic Heisenberg chain
with an impurity spinS′ are investigated by using the Betheansatzsolution. Dressed holes are
introduced in order to describe the elementary excitation. The characteristic energy dependence
of the spectral density for the elementary excitation at zero temperature is discussed in connection
with behaviour patterns of physical quantities. We extend our calculation for the elementary
excitation to the case of finite temperatures, applying the method developed by Yang and Yang
for one-dimensional interacting boson systems. At finite temperatures, in the case whereS < S ′,
the spectral density shows a divergence property at zero excitation energy irrespective of the
temperature, whereas in the case whereS > S′, the peak structure develops in the low-energy
region as the temperature is decreased.

1. Introduction

The one-dimensional Heisenberg model has attracted much interest for many years. The
model has been diagonalized by the Betheansatzmethod [1, 2]. Integrable generalization
of the model for an arbitrary spinS was achieved by Takhtajan [3] and Babujian [4]. In the
case of antiferromagnetic couplings, it was shown that the ground state is a singlet [3, 4], and
that the dispersion curve for the elementary excitation shows the formε(k) = (πJ/2) sink

(for 0 6 k 6 π ), irrespective ofS [3]. This is identified as a kink mode, since the total
spin changes to 1/2 in the elementary excitation. Thermodynamic properties have been
investigated both analytically [4] and numerically [5].

The integrable spin-S Heisenberg chain with an impurity spinS′ interacting with
neighbouring host spins has been studied intensively by several authors [6–11]. This model
was first diagonalized by Andrei and Johannesson [6] for the case whereS = 1/2 and for
arbitraryS ′. They investigated the thermodynamic properties of the model. In this model,
the interaction between the impurity spin and its neighbouring host spins has to be of a
special form in order to preserve the integrability. For arbitraryS and S ′, the model was
solved by Schlottmann [8]. The properties of this model can be divided into three cases:
(i) S = S ′; (ii) S < S ′; and (iii) S > S ′. In the case whereS = S ′, an impurity spin is
just one more site in the host spin chain. IfS < S ′, host spins are not able to compensate
the impurity spin into a singlet, and so there remains a spin degeneracy corresponding to
an effective spin(S ′ − S). Due to this effective spin, the specific heat shows a Schottky
anomaly, and the zero-field susceptibility diverges as described by a Curie law. IfS > S ′,
a peculiar spin degeneracy exists in the ground state, yielding unusual physical properties.
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The entropy takes the form [8]

S(T = 0, H = 0) = ln

{
sin[π(2S ′ + 1)/(2S + 2)]

sin[π/(2S + 2)]

}
(1)

S(T = 0, H 6= 0) = 0. (2)

At zero temperature, the susceptibility caused by an impurity spin shows a power-law
behaviour in a low magnetic field. At zero magnetic field, the susceptibility and the specific
heat diverge over the temperature range following a power law, as the temperature tends to
zero. It is noted that these exponents depend only on the magnitude of the host spin. Based
on these findings, it was concluded that properties of this model are closely related to those
of the multichannel Kondo model [8].

In this paper, we investigate the elementary excitation of the integrable spin-S

Heisenberg chain with an impurity spinS ′ in the cases whereS < S ′ and S > S ′ with
the use of the Betheansatzsolution. We turn our attention to the contribution from an
impurity spin. We treat only the case of antiferromagnetic couplings and take the coupling
constant to be 1. In section 2, we investigate the elementary excitation for the model at
zero temperature, introducing adressed holewhich is a local analogue of the kink mode.
We discuss characteristic properties of the excitation spectra in connection with patterns of
behaviour of physical quantities. In section 3, we extend the calculation of the elementary
excitation to the case of finite temperatures, following the method developed by Yang and
Yang for one-dimensional interacting boson systems [12–15]. Section 4 is devoted to a
brief summary.

2. Elementary excitations at zero temperature

We consider the elementary excitation of the integrable spin-S Heisenberg chain with an
impurity spin S ′ at zero temperature. As mentioned in section 1, the model was solved
exactly by the Betheansatzmethod and the basic equation was obtained for the rapidity
{3j } [8]:(

3j + iS

3j − iS

)N (
3j + iS ′

3j − iS ′

)
= −

M∏
i=1

3j − 3i + i

3j − 3i − i
(j = 1, 2, . . . , M) (3)

whereN is the number of host spins andM is related to the magnetization via

Sz = NS + S ′ − M.

The expression for the energy is written in terms of the rapidity as [8]

E = −
M∑

j=1

S

3j
2 + S2

. (4)

It was shown that the ground state of the model is determined by 2S-string solutions which
are distributed densely [8]. In the thermodynamic limit, the density function for the 2S-string
solution is obtained as [8]

σ0(3) = 1

2
sech(π3) + 1

N

∫ +∞

−∞
f (3 − 3′)

1

2
sech(π3′) d3′ (5)
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where

f (3) =



1

2S

sin(S ′π/S)

cosh(π3/S) + cos(S ′π/S)
(S > S ′)

δ(3) (S = S ′)

1

π

S ′ − S

32 + (S ′ − S)2
. (S < S ′)

(6)

The first term in (5) is the contribution from the host spin and the second one is that from
an impurity spin.

The elementary excitation from the ground state is obtained by introducing ahole into
the 2S-string solution, the real part of which is denoted byq. We refer to this as adressed-
hole excitation. By introducing a dressed hole, the backflow effect which is attributed to
the interaction rearranges the distribution of the 2S-string solution, and the density function
σ(3) is modified from that of the ground state:

σ(3) = σ0(3) + 1

N
1σ(3). (7)

The change of the density function1σ(3) is characterized byq and is determined by the
following equation:

1σ(3) +
∫ +∞

−∞
g(3 − 3′) 1σ(3′) d3′ = −δ(3 − q) (8)

whereg(3) is defined by

g(3) = 1

π

2S

32 + (2S)2
+ 2

π

2S − 1

32 + (2S − 1)2
+ · · · + 2

π

1

32 + 1
. (9)

The above integral equation is solved by Fourier transformation:

1σ(3) = − 1

2π

∫ +∞

−∞

1 − e−|ω|

(1 − e−2S|ω|)(1 + e−|ω|)
e−iω(3−q) dω. (10)

Using (10), the change of the magnetization is calculated as

−2S

∫ +∞

−∞
1σ(3) d3 = 1/2.

Accordingly, the dressed-hole excitation can be regarded as a local analogue of the kink
mode. From (4) and (10), we obtain the excitation energy as

ε(q) = π

2
sech(πq). (11)

Here, we introduce the spectral density for the dressed-hole excitation as a function of the
excitation energy,ε = ε(q). This is given by the number of states in a given range of the
excitation energy [ε, ε+dε]. The contribution from the impurity spin to the spectral density
is written as

D0(ε) = σ0I (q)

|dε/dq| (12)

whereσ0I (q) denotes the impurity part of the density function. Using expressions (5) and
(11), we calculate the spectral density for the elementary excitation at zero temperature.
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(a)

(b)

Figure 1. (a) Plots of the spectral density for the dressed-hole excitation for several temperatures
in the cases whereS = 3/2 andS′ = 5/2. (b) Plots of the whole excitation spectrum for several
temperatures in the cases whereS = 3/2 andS′ = 5/2.
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When S = S ′, the model reduces to the integrable spin-S Heisenberg chain which
consists of (N + 1) spins. In this case, the ground state is a singlet due to the
antiferromagnetic coupling [3, 4, 8], and the spectral density takes the form

D0(ε) = 1

2π

1√
(π/2)2 − ε2

(13)

which is independent ofS. This is the same form as in the case of anS = 1/2 Heisenberg
antiferromagnetic chain. In the case whereS < S ′, there exists a spin degeneracy
corresponding to the effective spin(S ′ −S) in the ground state. Due to the spin degeneracy,
D0(ε) shows a logarithmic behaviour in the low-energy region:

D0(ε) ∼ 1

2
(S ′ − S)

1

ε
[
ln (ε/π)

]2 . (14)

This kind of logarithmic behaviour appears in the susceptibility of an impurity spin in the
small-field region,χ ∼ S(S ′ − S)/[H(ln H)2] [8]. When S > S ′, properties of the ground
state are rather peculiar in contrast to the above two cases as seen in the residual entropy
shown in (1). This peculiar spin degeneracy induces a power-law behaviour inD0(ε) in the
low-energy region:

D0(ε) ∼


1

2π2S
sin

(
S ′

S
π

) ( ε

π

)1/S−1
(S > 1)

− 1

π3
ln

( ε

π

)
(S = 1, S ′ = 1/2).

(15)

It is noted that the exponent depends only on the host spinS. In the case whereS = 1
and S ′ = 1/2, the exponent vanishes, and a logarithmic divergence emerges. The kind
of behaviour is seen also in physical quantities such as the low-field susceptibility of an
impurity spin: χ ∼ H 1/S−1 (for S > 1) and − ln H (for S = 1 andS ′ = 1/2), and the
low-temperature susceptibility:χ ∼ T −1+4/(2S+2) (for S > 1) and − ln T (for S = 1 and
S ′ = 1/2) [8]. Our results indicate that so far as the low-energy behaviour is concerned, the
spectral density for the dressed-hole excitation reflects conspicuously features of physical
quantities which are caused by the many-body effect.

We now compare our results with the spectral density for the multichannel Kondo
model. In the low-energy region, the spectral density for the dressed-hole excitation of the
n-channel Kondo model takes the form [16]

D(ε) ∼



1

π

TK

ε2 + TK
2 (n = 2S ′)

1

4
(2S ′ − n)

1

ε[ln(ε/TK)]2
(n < 2S ′)

sin(2S ′π/n)

nπ cos(π/n)TK

(
ε

TK

)2/n−1

(n > 2S ′)

(16)

whereS ′ is the magnitude of an impurity spin andTK is the Kondo temperature. In the
low-energy region, the spectral densities of the present system in the cases whereS < S ′

andS > S ′ show similar energy dependences to those of the underscreened (n < 2S) and
the overscreened (n > 2S) cases, respectively. In the higher-energy region, the spectral
densities of the present model diverge as will be seen in figures 1(a)–2(b), although they do
not diverge in the multichannel Kondo model. It is considered that this divergence comes
from the properties of the spectral density for the bulk system in the higher-energy region.
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3. Elementary excitations at finite temperatures

3.1. Formulation

We now extend the calculation of the elementary excitation to the case of finite temperatures,
applying the method developed by Yang and Yang [12–15]. Other kinds of string solution
are introduced in order to formulate the thermodynamics of the system. We recall here that
the ground state of the model is given only by the 2S-string solution, and that the leading
contribution to thermodynamic quantities in the low-temperature region is from the 2S-string
solution [8]. Therefore, it is considered that a simple excitation is given by removing one of
the 2S-string solutions at thermal equilibrium. We refer to this as a dressed-hole excitation
at finite temperatures, which is characterized by the real part of the removed solution. The
backflow effect rearranges the distribution of rapidities; hence, the energy shifts from the
value at thermal equilibrium. The excitation energy renormalized by the backflow effect is
given in terms of the pseudo-energy at thermal equilibrium corresponding to the 2S-string
solution

1E(q) = −ε2S(q) + ε2S(−∞) (17)

where q is the real part of the 2S-string solution removed. The pseudo-energy defined
as εn(3) = T ln[σh

n (3)/σn(3)] (n = 1, 2, . . .) is determined by a set of coupled integral
equations [8]:

εn(3) = T

2
sech(π3) ∗

{
ln

[
1 + exp

(εn−1

T

)] [
1 + exp

(εn+1

T

)]}
− δn,2S

π

2
sech(π3) (18)

where the asterisk denotes convolution. The impurity parts of the density functions of
particlesσn,I (3) and of holesσh

n,I (3) for n-string solutions are obtained from the following
set of coupled integral equations [8]:

σn,I (3) + σh
n,I (3) = 1

2
sech(π3) ∗ [

σh
n+1,I (3) + σh

n−1,I (3)
] + δn,2S ′

1

2
sech(π3). (19)

In the limit of zero temperature,1E(q) coincides with the excitation energy from the
ground state shown in (11).

At finite temperatures, the contribution from an impurity spin to the spectral density is
expressed in terms of the excitation energyε = −ε2S(q) + ε2S(−∞):

D(ε) = σ2S,I (q)

|dε2S(q)/dq| . (20)

In order to see the behaviour ofD(ε) clearly, we introduce thewholeexcitation spectrum,
defined as

ρ(ε) = σ2S,I (q) + σh
2S,I (q)

|dε2S(q)/dq| . (21)

These spectral densities satisfy the relation

D(ε) = 1

1 + exp{(−ε + ε2S(−∞))/T }ρ(ε). (22)

The total weight of the dressed-hole excitation depends on the temperature and satisfies the
following relation:∫ ∞

0
D(ε) dε = min(S, S ′)

2S
−

∑
n6=2S

n

∫ ∞

−∞
σn,I (3) d3. (23)

It is seen that the total weight takes the maximum value min(S, S ′)/2S at zero temperature,
and decreases as the temperature is increased.
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(a)

(b)

Figure 2. (a) Plots of the spectral density for the dressed-hole excitation for several temperatures
in the cases whereS = 3/2 andS′ = 1/2. (b) Plots of the whole excitation spectrum for several
temperatures in the cases whereS = 3/2 andS′ = 1/2.
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3.2. Numerical results

Here, we show the numerical results for the elementary excitation spectrum in the cases
whereS < S ′ andS > S ′. WhenS < S ′, the partial compensation of an impurity spin takes
place, leaving the spin degeneracy ln[2(S ′ − S) + 1] at zero temperature. The divergence
property of the spectral densities in the low-energy region in figures 1(a) and 1(b) can be
understood from this remaining spin degeneracy. It is seen that the temperature dependence
of ρ(ε) is not so conspicuous in contrast toD(ε), andρ(ε) shifts slightly to the higher-
energy region as the temperature is increased.

In the case whereS > S ′, the remaining spin degeneracy is rather peculiar as in (1).
The numerical results forD(ε) andρ(ε) are shown in figures 2(a) and 2(b), respectively, in
the cases whereS = 3/2 andS ′ = 1/2. Judging from the numerical results,D(0) andρ(0)

do not diverge and increase as the temperature is decreased. The peak structure inD(ε) in
the low-energy region grows and shifts towards the lower-energy region, as the temperature
is decreased. This pattern of behaviour can be interpreted in terms of the increment of the
low-energy state which compensates an impurity spinS ′.

From the numerical results, we can see that the spectral densities approach those of zero
temperature, when the temperature is decreased. This means that the present formulation
of finite temperatures is a reasonable extension from the zero-temperature case. In the
case whereS < S ′, the temperature dependence ofρ(ε) is very weak in the low-energy
region. Therefore, the characteristic temperature dependence ofD(ε) in the low-energy
region is well described by multiplying the spectral density at zero temperature by the
Fermi distribution function. In the case whereS > S ′, on the other hand, the temperature
dependence ofD(ε) cannot be described by using only the Fermi distribution function.

In the higher-energy region, the spectral densities diverge in both cases. The energy
values where the spectra diverge coincide with each other in the two cases at a given
temperature, if the magnitudes of the host spins are the same. Therefore, it is considered
that the divergence property in the higher-energy region reflects the property of the excitation
spectrum for the host spin not only at zero temperature but also at finite temperatures.

4. Summary

We have investigated the elementary excitation for the integrable spin-S Heisenberg chain
with an impurity spin, introducing a dressed hole. We have shown that the spectral densities
of an impurity spin show characteristic behaviours in the low-energy region depending on
the values ofS andS ′.
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